
Package: kernelboot (via r-universe)
September 15, 2024

Type Package

Title Smoothed Bootstrap and Random Generation from Kernel Densities

Version 0.1.10

Date 2023-04-14

Author Tymoteusz Wolodzko

Maintainer Tymoteusz Wolodzko <twolodzko+kernelboot@gmail.com>

Description Smoothed bootstrap and functions for random generation
from univariate and multivariate kernel densities. It does not
estimate kernel densities.

License GPL-2

URL https://github.com/twolodzko/kernelboot

BugReports https://github.com/twolodzko/kernelboot/issues

Depends R (>= 3.1.0)

LinkingTo Rcpp

Imports Rcpp, future, future.apply, parallelly

Suggests covr, testthat, ks, KernSmooth, cramer

Encoding UTF-8

RoxygenNote 7.2.3

Repository https://twolodzko.r-universe.dev

RemoteUrl https://github.com/twolodzko/kernelboot

RemoteRef HEAD

RemoteSha 014753d9d0b5e45446f7a18950853700c97d4a9a

Contents
bw.silv . 2
kernelboot . 3
kernelboot-class . 8
rmvg . 8

1

https://github.com/twolodzko/kernelboot
https://github.com/twolodzko/kernelboot/issues

2 bw.silv

rmvk . 10
ruvk . 12
summary.kernelboot . 14

Index 15

bw.silv Bandwidth selector for multivariate kernel density estimation

Description

Rule of thumb bandwidth selectors for Gaussian kernels as described by Scott (1992) and Silverman
(1986).

Usage

bw.silv(x, na.rm = FALSE)

bw.scott(x, na.rm = FALSE)

Arguments

x numeric matrix or data.frame.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

Details

Scott’s (1992) rule is defined as

H = n−2/(m+4)Σ̂

Silverman’s (1986; see Chacon, Duong and Wand, 2011) rule is defined as

H =

(
4

n(m+ 2)

)2/(m+4)

Σ̂

where m is number of variables, n is sample size, Σ̂ is the empirical covariance matrix. The
bandwidth is returned as a covariance matrix, so to use it for a product kernel, take square root of
it’s diagonal: sqrt(diag(H)).

bw.silv corresponds to Hns method with deriv.order=0 from the ks package.

kernelboot 3

References

Silverman, B.W. (1986). Density estimation for statistics and data analysis. Chapman and Hall/CRC.

Wand, M.P. and Jones, M.C. (1995). Kernel smoothing. Chapman and Hall/CRC.

Scott, D.W. (1992). Multivariate density estimation: theory, practice, and visualization. John Wiley
& Sons.

Chacon J.E., Duong, T. and Wand, M.P. (2011). Asymptotics for general multivariate kernel density
derivative estimators. Statistica Sinica, 21, 807-840.

Epanechnikov, V.A. (1969). Non-parametric estimation of a multivariate probability density. The-
ory of Probability & Its Applications, 14(1): 153-158.

See Also

bandwidth

kernelboot Smoothed bootstrap

Description

Smoothed bootstrap is an extension of standard bootstrap using kernel densities.

Usage

kernelboot(
data,
statistic,
R = 500L,
bw = "default",
kernel = c("multivariate", "gaussian", "epanechnikov", "rectangular", "triangular",

"biweight", "cosine", "optcosine", "none"),
weights = NULL,
adjust = 1,
shrinked = TRUE,
ignore = NULL,
parallel = FALSE,
workers = 1L

)

Arguments

data vector, matrix, or data.frame. For non-numeric values standard bootstrap is ap-
plied (see below).

statistic a function that is applied to the data. The first argument of the function will
always be the original data.

R the number of bootstrap replicates.

4 kernelboot

bw the smoothing bandwidth to be used (see density). The kernels are scaled
such that this is the standard deviation, or covariance matrix of the smoothing
kernel. By default bw.nrd0 is used for univariate data, and bw.silv is used
for multivariate data. When using kernel = "multivariate" this parameter
should be a covariance matrix of the smoothing kernel.

kernel a character string giving the smoothing kernel to be used. This must partially
match one of "multivariate", "gaussian", "rectangular", "triangular", "epanech-
nikov", "biweight", "cosine", "optcosine", or "none" with default "multivariate",
and may be abbreviated. Using kernel = "multivariate" forces multivariate
Gaussian kernel (or univariate Gaussian for univariate data). Using kernel =
"none" forces using standard bootstrap (no kernel smoothing).

weights vector of importance weights. It should have as many elements as there are
observations in data. It defaults to uniform weights.

adjust scalar; the bandwidth used is actually adjust*bw. This makes it easy to specify
values like ’half the default’ bandwidth.

shrinked logical; if TRUE random generation algorithm preserves means and variances of
the variables. This parameter is ignored for "multivariate" kernel.

ignore vector of names of columns to be ignored during the smoothing phase of boot-
strap procedure (their values are not altered using random noise).

parallel if TRUE, parallel computing is used (see future_lapply). Warning: using par-
allel computing does not necessary have to lead to improved performance.

workers the number of workers used for parallel computing.

Details

Smoothed bootstrap is an extension of standard bootstrap procedure, where instead of drawing sam-
ples with replacement from the empirical distribution, they are drawn from kernel density estimate
of the distribution.

For smoothed bootstrap, points (in univariate case), or rows (in multivariate case), are drawn with
replacement, to obtain samples of size n from the initial dataset of size n, as with standard bootstrap.
Next, random noise from kernel density K is added to each of the drawn values. The procedure is
repeated R times and statistic is evaluated on each of the samples.

The noise is added only to the numeric columns, while non-numeric columns (e.g. character,
factor, logical) are not altered. What follows, to the non-numeric columns and columns listed in
ignore parameter standard bootstrap procedure is applied.

Univariate kernel densities

Univariate kernel density estimator is defined as

f̂h(x) =

n∑
i=1

wi Kh(x− yi)

where w is a vector of weights such that all wi ≥ 0 and
∑

i wi = 1 (by default uniform 1/n
weights are used), Kh = K(x/h)/h is kernel K parametrized by bandwidth h and y is a vector of
data points used for estimating the kernel density.

kernelboot 5

To draw samples from univariate kernel density, the following procedure can be applied (Silverman,
1986):

Step 1 Sample i uniformly with replacement from 1, . . . , n.

Step 2 Generate ε to have probability density K.

Step 3 Set x = yi + hε.

If samples are required to have the same variance as data (i.e. shrinked = TRUE), then Step 3 is
modified as following:

Step 3’ x = ȳ + (yi − ȳ + hε)/(1 + h2σ2
K/σ2

Y)
1/2

where σ2
K is variance of the kernel (fixed to 1 for kernels used in this package).

When shrinkage described in Step 3’ is applied, the smoothed bootstrap density function changes
it’s form to

f̂h,b(x) = (1 + r) f̂h(x+ r(x− ȳ))

where r =
(
1 + h2σ2

K/σ2
y

)1/2 − 1.

This package offers the following univariate kernels:

Gaussian 1√
2π

e−u2/2

Rectangular 1
2 1(|u|≤1)

Triangular (1− |u|) 1(|u|≤1)

Epanchenikov 3
4 (1− u2) 1(|u|≤1)

Biweight 15
16 (1− u2)2 1(|u|≤1)

Cosine 1
2 (1 + cos(πu)) 1(|u|≤1)

Optcosine π
4 cos

(
π
2u

)
1(|u|≤1)

All the kernels are re-scalled so that their standard deviations are equal to 1, so that bandwidth
parameter controls their standard deviations.

Random generation from Epanchenikov kernel is done using algorithm described by Devroye (1986).
For optcosine kernel inverse transform sampling is used. For biweight kernel random values are
drawn from Beta(3, 3) distribution and Beta(3.3575, 3.3575) distribution serves as a close approx-
imation of cosine kernel. Random generation for triangular kernel is done by taking difference of
two i.i.d. uniform random variates. To sample from rectangular and Gaussian kernels standard
random generation algorithms are used (see runif and rnorm).

Product kernel densities

Univariate kernels may easily be extended to multiple dimensions by using product kernel

f̂H(x) =

n∑
i=1

wi

m∏
j=1

Khj
(xi − yij)

where w is a vector of weights such that all wi ≥ 0 and
∑

i wi = 1 (by default uniform 1/n weights
are used), and Khj

are univariate kernels K parametrized by bandwidth hj , where y is a matrix of
data points used for estimating the kernel density.

6 kernelboot

Random generation from product kernel is done by drawing with replacement rows of y, and then
adding to the sampled values random noise from univariate kernels K, parametrized by correspond-
ing bandwidth parameters hj .

Multivariate kernel densities

Multivariate kernel density estimator may also be defined in terms of multivariate kernels KH (e.g.
multivariate normal distribution, as in this package)

f̂H(x) =

n∑
i=1

wi KH(x− yi)

where w is a vector of weights such that all wi ≥ 0 and
∑

i wi = 1 (by default uniform 1/n weights
are used), KH is kernel K parametrized by bandwidth matrix H and y is a matrix of data points
used for estimating the kernel density.

Notice: When using multivariate normal (Gaussian) distribution as a kernel K, the bandwidth pa-
rameter H is a covariance matrix as compared to standard deviations used in univariate and product
kernels.

Random generation from multivariate kernel is done by drawing with replacement rows of y, and
then adding to the sampled values random noise from multivariate normal distribution centered at
the data points and parametrized by corresponding bandwidth matrix H . For further details see
rmvg.

References

Silverman, B. W. (1986). Density estimation for statistics and data analysis. Chapman and Hall/CRC.

Scott, D. W. (1992). Multivariate density estimation: theory, practice, and visualization. John Wiley
& Sons.

Efron, B. (1981). Nonparametric estimates of standard error: the jackknife, the bootstrap and other
methods. Biometrika, 589-599.

Hall, P., DiCiccio, T.J. and Romano, J.P. (1989). On smoothing and the bootstrap. The Annals of
Statistics, 692-704.

Silverman, B.W. and Young, G.A. (1987). The bootstrap: To smooth or not to smooth? Biometrika,
469-479.

Scott, D.W. (1992). Multivariate density estimation: theory, practice, and visualization. John Wiley
& Sons.

Wang, S. (1995). Optimizing the smoothed bootstrap. Annals of the Institute of Statistical Mathe-
matics, 47(1), 65-80.

Young, G.A. (1990). Alternative smoothed bootstraps. Journal of the Royal Statistical Society.
Series B (Methodological), 477-484.

De Angelis, D. and Young, G.A. (1992). Smoothing the bootstrap. International Statistical Re-
view/Revue Internationale de Statistique, 45-56.

Polansky, A.M. and Schucany, W. (1997). Kernel smoothing to improve bootstrap confidence inter-
vals. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59(4), 821-838.

Devroye, L. (1986). Non-uniform random variate generation. New York: Springer-Verlag.

kernelboot 7

Parzen, E. (1962). On estimation of a probability density function and mode. The annals of mathe-
matical statistics, 33(3), 1065-1076.

Silverman, B.W. and Young, G.A. (1987). The bootstrap: To smooth or not to smooth? Biometrika,
469-479.

Jones, M.C. (1991). On correcting for variance inflation in kernel density estimation. Computa-
tional Statistics & Data Analysis, 11, 3-15.

See Also

bw.silv, density, bandwidth, kernelboot-class

Examples

set.seed(1)

smooth bootstrap of parameters of linear regression

b1 <- kernelboot(mtcars, function(data) coef(lm(mpg ~ drat + wt, data = data)) , R = 250)
b1
summary(b1)

b2 <- kernelboot(mtcars, function(data) coef(lm(mpg ~ drat + wt, data = data)) , R = 250,
kernel = "epanechnikov")

b2
summary(b2)

smooth bootstrap of parameters of linear regression
smoothing phase is not applied to "am" and "cyl" variables

b3 <- kernelboot(mtcars, function(data) coef(lm(mpg ~ drat + wt + am + cyl, data = data)) , R = 250,
ignore = c("am", "cyl"))

b3
summary(b3)

standard bootstrap (without kernel smoothing)

b4 <- kernelboot(mtcars, function(data) coef(lm(mpg ~ drat + wt + am + cyl, data = data)) , R = 250,
ignore = colnames(mtcars))

b4
summary(b4)

smooth bootstrap for median of univariate data

b5 <- kernelboot(mtcars$mpg, function(data) median(data) , R = 250)
b5
summary(b5)

8 rmvg

kernelboot-class ’kernelboot’ class object

Description

’kernelboot’ class object

Details

Object of class "kernelboot", is a list with components including

orig.stat estimates from statistic on the original data,
boot.samples samples drawn,
call function call,
statistic actual statistic function that was used,
orig.data original data used for bootstrapping,
variables used variables: it is NULL for univariate data and for multivariate data it contains two lists of smoothed and ignored variables (names or column indexes) during the smoothing phase.
type type of kernel density that was used ("univariate", "product", "multivariate"),
param list of parameters that were used.

param section contains:

R number of bootstrap iterations,
bw the bandwidth that was used,
weights vector of the weights that were applied,
kernel name of the kernel that was used ("multivariate", "gaussian", "epanechnikov", "rectangular", "triangular", "biweight", "cosine", "optcosine", "none"),
shrinked value of the shrinked parameter,
parallel indicates if parallel computation was used,
random.seed random seed used to initialize the random number generator (see .Random.seed).

See Also

kernelboot

rmvg Random generation from multivariate Gaussian kernel density

Description

Random generation from multivariate Gaussian kernel density

Usage

rmvg(n, y, bw = bw.silv(y), weights = NULL, adjust = 1)

rmvg 9

Arguments

n number of observations. If length(n) > 1, the length is taken to be the number
required.

y numeric matrix or data.frame.

bw numeric matrix with number of rows and columns equal to ncol(y); the smooth-
ing bandwidth to be used. This is the covariance matrix of the smoothing kernel.
If provided as a single value, the same bandwidth is used for each variable. If
provided as a single value, or as a vector, variables are considered as uncorre-
lated.

weights numeric vector of length equal to nrow(y); must be non-negative.

adjust scalar; the bandwidth used is actually adjust*bw. This makes it easy to specify
values like ’half the default’ bandwidth.

Details

Multivariate kernel density estimator with multivariate Gaussian (normal) kernels KH is defined as

f̂H(x) =

n∑
i=1

wi KH (x− yi)

where w is a vector of weights such that all wi ≥ 0 and
∑

i wi = 1 (by default uniform 1/n weights
are used), KH is kernel K parametrized by bandwidth matrix H and y is a matrix of data points
used for estimating the kernel density.

Random generation from multivariate normal distribution is possible by taking

x = A′z + µ

where z is a vector of m i.i.d. standard normal deviates, µ is a vector of means and A is a m ×m
matrix such that A′A = Σ (A is a Cholesky factor of Σ). In the case of multivariate Gaussian
kernel density, µ, is the i-th row of y, where i is drawn randomly with replacement with probability
proportional to wi, and Σ is the bandwidth matrix H .

For functions estimating kernel densities please check KernSmooth, ks, or other packages reviewed
by Deng and Wickham (2011).

References

Deng, H. and Wickham, H. (2011). Density estimation in R. http://vita.had.co.nz/papers/
density-estimation.pdf

See Also

kernelboot

http://vita.had.co.nz/papers/density-estimation.pdf
http://vita.had.co.nz/papers/density-estimation.pdf

10 rmvk

Examples

set.seed(1)

dat <- mtcars[, c(1,3)]
bw <- bw.silv(dat)
X <- rmvg(5000, dat, bw = bw)

if (requireNamespace("ks", quietly = TRUE)) {

pal <- colorRampPalette(c("chartreuse4", "yellow", "orange", "brown"))
col <- pal(10)[cut(ks::kde(dat, H = bw, eval.points = X)$estimate, breaks = 10)]

plot(X, col = col, pch = 19, axes = FALSE,
main = "Multivariate Gaussian Kernel")

points(dat, pch = 2, col = "blue")
axis(1); axis(2)

} else {

plot(X, pch = 16, axes = FALSE, col = "#458B004D",
main = "Multivariate Gaussian Kernel")

points(dat, pch = 2, col = "red", lwd = 2)
axis(1); axis(2)

}

rmvk Random generation from product kernel density

Description

Random generation from product kernel density

Usage

rmvk(
n,
y,
bw = sqrt(diag(bw.silv(y))),
kernel = c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight",

"cosine", "optcosine"),
weights = NULL,
adjust = 1,
shrinked = FALSE

)

rmvk 11

Arguments

n number of observations. If length(n) > 1, the length is taken to be the number
required.

y numeric matrix or data.frame.

bw numeric vector of length equal to ncol(y); the smoothing bandwidth to be used.
The kernels are scaled such that this is the standard deviation of the smoothing
kernel (see density for details). If provided as a single value, the same band-
width is used for each variable.

kernel a character string giving the smoothing kernel to be used. This must partially
match one of "gaussian", "rectangular", "triangular", "epanechnikov", "biweight",
"cosine" or "optcosine", with default "gaussian", and may be abbreviated.

weights numeric vector of length equal to nrow(y); must be non-negative.

adjust scalar; the bandwidth used is actually adjust*bw. This makes it easy to specify
values like ’half the default’ bandwidth.

shrinked if TRUE random generation algorithm preserves mean and variances of the indi-
vidual variables (see ruvk). Shrinking is applied to each of the variables indi-
vidually.

Details

Product kernel density is defined in terms of independent univariate kernels

f̂H(x) =

n∑
i=1

wi

m∏
j=1

Khj (xi − yij)

where w is a vector of weights such that all wi ≥ 0 and
∑

i wi = 1 (by default uniform 1/n weights
are used), Khj

is univariate kernel K parametrized by bandwidth hj , where y is a matrix of data
points used for estimating the kernel density.

For functions estimating kernel densities please check KernSmooth, ks, or other packages reviewed
by Deng and Wickham (2011).

For random generation the algorithm described in kernelboot is used. When using shrinked =
TRUE, random noise is drawn from independent, shrinked univariate kernels.

References

Deng, H. and Wickham, H. (2011). Density estimation in R. http://vita.had.co.nz/papers/
density-estimation.pdf

See Also

kernelboot

http://vita.had.co.nz/papers/density-estimation.pdf
http://vita.had.co.nz/papers/density-estimation.pdf

12 ruvk

Examples

dat <- mtcars[, c("mpg", "disp")]

partmp <- par(mfrow = c(1, 2), mar = c(3, 3, 3, 3))

plot(rmvk(5000, dat, shrinked = FALSE), col = "#458B004D", pch = 16,
xlim = c(0, 45), ylim = c(-200, 800),
main = "Product kernel", axes = FALSE)

points(dat, pch = 2, lwd = 2, col = "red")
axis(1); axis(2)

plot(rmvk(5000, dat, shrinked = TRUE), col = "#458B004D", pch = 16,
xlim = c(0, 45), ylim = c(-200, 800),
main = "Product kernel (shrinked)", axes = FALSE)

points(dat, pch = 2, lwd = 2, col = "red")
axis(1); axis(2)

par(partmp)

cov(dat)
cov(rmvk(5000, dat, shrinked = FALSE))
cov(rmvk(5000, dat, shrinked = TRUE))

ruvk Random generation from univariate kernel density

Description

Random generation from univariate kernel density

Usage

ruvk(
n,
y,
bw = bw.nrd0(y),
kernel = c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight",

"cosine", "optcosine"),
weights = NULL,
adjust = 1,
shrinked = FALSE

)

Arguments

n number of observations. If length(n) > 1, the length is taken to be the number
required.

ruvk 13

y numeric vector.

bw the smoothing bandwidth to be used. The kernels are scaled such that this is the
standard deviation of the smoothing kernel (see density for details).

kernel a character string giving the smoothing kernel to be used. This must partially
match one of "gaussian", "rectangular", "triangular", "epanechnikov", "biweight",
"cosine" or "optcosine", with default "gaussian", and may be abbreviated.

weights numeric vector of length equal to length(y); must be non-negative.

adjust scalar; the bandwidth used is actually adjust*bw. This makes it easy to specify
values like ’half the default’ bandwidth.

shrinked if TRUE random generation algorithm preserves mean and variance of the original
sample.

Details

Univariate kernel density estimator is defined as

f̂h(x) =

n∑
i=1

wi Kh(x− yi)

where w is a vector of weights such that all wi ≥ 0 and
∑

i wi = 1 (by default uniform 1/n
weights are used), Kh = K(x/h)/h is kernel K parametrized by bandwidth h and y is a vector of
data points used for estimating the kernel density.

For estimating kernel densities use the density function.

The random generation algorithm is described in the documentation of kernelboot function.

References

Deng, H. and Wickham, H. (2011). Density estimation in R. http://vita.had.co.nz/papers/
density-estimation.pdf

See Also

kernelboot, density

Examples

ruvk() produces samples from kernel densities as estimated using
density() function from base R

hist(ruvk(1e5, mtcars$mpg), 100, freq = FALSE, xlim = c(5, 40))
lines(density(mtcars$mpg, bw = bw.nrd0(mtcars$mpg)), col = "red")

when using 'shrinked = TRUE', the samples differ from density() estimates
since they are shrinked to have the same variance as the underlying data

hist(ruvk(1e5, mtcars$mpg, shrinked = TRUE), 100, freq = FALSE, xlim = c(5, 40))
lines(density(mtcars$mpg, bw = bw.nrd0(mtcars$mpg)), col = "red")

http://vita.had.co.nz/papers/density-estimation.pdf
http://vita.had.co.nz/papers/density-estimation.pdf

14 summary.kernelboot

Comparison of different univariate kernels under standard parametrization

kernels <- c("gaussian", "epanechnikov", "rectangular", "triangular",
"biweight", "cosine", "optcosine")

partmp <- par(mfrow = c(2, 4), mar = c(3, 3, 3, 3))
for (k in kernels) {

hist(ruvk(1e5, 0, 1, kernel = k), 25, freq = FALSE, main = k)
lines(density(0, 1, kernel = k), col = "red")

}
par(partmp)

summary.kernelboot Summarize the result of kernelboot

Description

Summarize the result of kernelboot

Usage

S3 method for class 'kernelboot'
summary(object, probs = c(0.025, 0.5, 0.975), ..., na.rm = FALSE)

Arguments

object kernelboot class object.

probs quantiles returned by summary (see quantile).

... further arguments passed to or from other methods.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

Index

.Random.seed, 8

bandwidth, 3, 7
bw.nrd0, 4
bw.scott (bw.silv), 2
bw.silv, 2, 4, 7

density, 4, 7, 11, 13

future_lapply, 4

kernelboot, 3, 8, 9, 11, 13
kernelboot-class, 8

quantile, 14

rmvg, 6, 8
rmvk, 10
rnorm, 5
runif, 5
ruvk, 11, 12

summary.kernelboot, 14

15

	bw.silv
	kernelboot
	kernelboot-class
	rmvg
	rmvk
	ruvk
	summary.kernelboot
	Index

